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The unsteady boundary-layer flow produced by a two-dimensional vortex in motion 
above an infinite plane wall in an otherwise stagnant fluid is considered in the limit 
of infinite Reynolds number. This study is part of a continuing investigation into the 
nature of the physical processes that occur near the surface in transitional and fully 
turbulent boundary layers. The adverse pressure gradient due to the vortex leads to 
the development of a zone of recirculation in the viscous flow near the surface, and 
the boundary-layer flow then focuses rapidly toward an eruption along a band which 
is very narrow in the streamwise direction. The evolution of the unsteady boundary 
layer is posed in Lagrangian coordinates and computed using an efficient, factored 
AD1 numerical method. The boundary-layer solution is found to develop a separation 
singularity and to evolve toward a terminal stage which is generic in two-dimensional 
unsteady flows. The computed results are compared with the results of asymptotic 
theory of two-dimensional boundary-layer separation and the agreement is found to 
be excellent. 

1. Introduction 
Unsteady boundary-layer separation occurs in a number of important applications 

such as the flows encountered in turbomachinery and on pitching airfoil surfaces 
(McCroskey 1982 ; Smith 1982 ; Elliott & Smith 1987, and the references therein) ; in 
addition, in turbulent flows near walls, it is well known (as discussed subsequently) 
that the wall-layer flow breaks down intermittently and develops strong localized 
eruptions (Walker et al. 1989; Smith et al. 1991). At high Reynolds number, Re, the 
separation process is invariably initiated in a thin unsteady viscous boundary layer 
near a solid surface in the form of the evolution of a closed recirculating eddy, in a 
region where the mainstream pressure gradient is adverse. In the classical studies of 
impulsive motion past bluff bodies (see, for example, Collins & Dennis 1973; Riley 
1975), the recirculation zone is generally attached to the body and the first 
appearance of reversed flow was traditionally referred to as separation (Riley 1975). 
For impulsively started flow past a bluff body, the vanishing of the wall shear 
generally signals the onset of reversed flow within the boundary layer. The 
impulsively started circular cylinder has been studied extensively (see, for example, 
Collins & Dennis 1973 ; Van Dommelen 1981), and at the initiation of the motion, the 
wall shear is positive everywhere. Shortly thereafter the wall shear vanishes at the 
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rear stagnation point and a point of zero wall shear moves rapidly upstream along 
the cylinder surface. A t  any time, the point of zero shear defines the upstream 
location of a growing region of recirculating flow (and negative wall shear) which is 
attached to the back portion of the cylinder. A t  this stage of development, the entire 
flow field may be still viewed as double-structured, consisting of an outer inviscid 
flow and a (as yet) thin viscous boundary layer immediately adjacent to the surface. 
Eventually, the thickening boundary layer must grow to the point where the 
boundary-layer thickness is comparable with the dimensions of the cylinder and the 
external flow is thereby significantly affected. Such an event will be referred to here 
as an unsteady viscous-inviscid interaction, and since such interactions occur in a 
variety of situations, it is important to understand why they initiate and how they 
develop in time. Riley (1975) has used the term ‘breakaway’ to describe the first 
breakdown of the boundary-layer assumption, namely that the boundary layer is 
thin. On the basis of a similarity solution due to  Proudman & Johnson (1962) which 
predicts exponential thickening of the boundary layer at the rear stagnation point, 
Riley (1975) argued that the onset of interaction with the external flow possibly 
occurs only a t  infinite time on the boundary-layer timescale and in the process the 
external flow is simply displaced from the cylinder surface. The correct nature of the 
interaction is considerably more complicated and localized in nature than this and 
was eventually elucidated by Van Dommelen & Shen (1980), whose work will be 
discussed subsequently. 

For impulsive motion past stationary bluff bodies, the current streamwise location 
(as well as the first appearance) of a point of zero wall shear is an important defining 
feature of the instantaneous flow structure. However, unsteady boundary-layer flows 
involve a rich variety of complex phenomena and the subject of laminar unsteady 
separation has been controversial over the past twenty years. Two main points have 
been at issue, namely: (i) how unsteady separation should be defined, and (ii) 
whether or not a singularity evolves at finite time within the solution of the 
boundary-layer equations in all cases of unsteady separation (see, for example, Riley 
1975; Williams 1977 and Cousteix 1986). Sears & Telionis (1971, 1975) pointed out 
that the traditional criterion of vanishing of the wall shear and the onset of reversed 
flow are not sufficiently general to describe all cases of unsteady separation; they 
quote examples involving moving walls where vanishing of the wall shear is not a 
significant feature of the flow structure nor a precursor to the interaction eventually 
taking place. More complex examples are described by Walker (1978) and Ece, 
Walker & Doligalski (1984). The model problem of interest in the present study was 
originally considered by Walker (1978) and corresponds to the boundary layer 
induced by a vortex in motion above an infinite plane wall in an otherwise stagnant 
fluid, as indicated in figure 1. In a frame of reference moving with the vortex, there 
is flow in the boundary layer in both the upstream and downstream directions even 
in the early stages of the motion (Walker 1978), and the conventional notions of 
‘reversed flow ’ do not apply. As time passes, a recirculating eddy forms and starts 
to grow within the boundary layer, but the eddy is aloft and not attached to the wall. 
This first appearance of closed instantaneous streamlines is one possible definition of 
separation which is in the spirit of the classical view of separation for flow past fixed 
walls. The evolution of a recirculating region is normally followed by dramatic 
growth of the eddy and i t  is also usually a precursor to a strong interaction with the 
mainstream (see also Ersoy & Walker 1985, 1986), or in other words ‘breakaway’. 
Another relevant example is the impulsively started translating and rotating circular 
cylinder considered by Ece et al. (1984). Here closed recirculating eddies appear 
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FIGURE 1.  Schematic diagram of the geometry for the model problem with 

image vortex below the wall. 

within the boundary layer shortly after the impulsive start. Again, however, these 
eddies are not attached to the wall, and their birth is not associated with a zero in 
the wall shear. 

An alternative and rather different view of boundary-layer separation was 
proposed by Sears & Telionis (1971, 1975) in order to generalize the definition of 
separation. They argued that separation should be defined in all cases as that instant 
when a singularity develops in the boundary-layer solution. It is useful here to 
discuss the physical implications of the evolution of a singularity. The boundary- 
layer equations are an exact subset of the NavierStokes equations in the limit as 
Re + 00 and describe an attached flow in a thin layer near the surface. The boundary- 
layer solution is described in part by the scaled variables 

y = Re; Y ,  v = Re; V ,  (1) 

where Y measures distance normal to the surface and V is the corresponding velocity 
component. As long as the boundary layer is thin and attached, y and v are O(1). On 
the other hand, when rapid thickening occurs and the fluid particles are eventually 
located at  a distance greater than O(Re4) from the wall, y must become large in order 
to overcome the infinite limiting value of Re. Similarly with the evolution of large 
updraughts having a magnitude greater than O(Re-f), TI must become singular. 
Consequently, the definition of separation in this context is similar to what Riley 
(1975) has termed 'breakaway ' and some other authors (Williams 1977) have termed 
breakdown. The formation of a singularity may be thought of as the fist time at 
which an erupting boundary layer has a significant effect on the external inviscid 
flow ; put another way, it represents the onset of viscous-inviscid interaction between 
the boundary layer and the outer mainstream flow, for which new scalings of the 
NavierStokes equations are required to describe the flow problem locally. 

Sears & Telionis (1971, 1975) put forth what is now known aa the MRS model of 
separation (after Moore 1958, Rott 1956 and Sears) in which they envisaged a 
moving stagnation point termed the ' centre of separation ' (which in general is above 
the wall), with a singularity forming somewhere on the zero vorticity line at finite 
time. Note that such a line is present whenever regions of recirculating flow develop 
in the boundary layer. Sears & Telionis (1971) also argued that the singularity 
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defining ‘separation ’ was similar to the Goldstein (1948) singularity, which is known 
to occur in steady two-dimensional boundary-layer solutions when the mainstream 
pressure gradient is adverse and prescribed. The conjectures of Sears & Telionis 
(1971) were controversial, particularly the proposed Goldstein singularity structure 
(Riley 1975; Williams 1977). A large number of attempts were made to verify the 
proposed behaviour through numerical calculations, some of which are discussed by 
Williams (1977). By and large, these numerical studies were inconclusive and were 
hampered by two problems. First, as Williams (1977) has noted, the speed at which 
the ‘centre of separation’ moves is unknown in any given problem; thus the 
conjectured streamline pattern near the ‘ centre of separation ’ (Sears & Telionis 
1971) can only be clearly observed in a moving reference frame whose velocity is 
unknown a priori. Second, all boundary-layer integrations prior to 1980 were carried 
out using a mesh fixed in space and the conventional Eulerian description of the fluid 
motion. Although it was evident that severe numerical difficulties were being 
encountered (Collins & Dennis 1973 ; Walker 1978; Cebeci 1986) in such integrations, 
it was not possible to definitively pinpoint the reasons for the failures. In most 
situations, the boundary-layer solutions were observed to start t o  develop relatively 
large normal velocities in a local zone which was narrow in the streamwise direction. 
Furthermore, despite a variety of attempts to pack grid points into the zone (see, for 
example, Cebeci 1986), it  was not possible to continue the integrations with good 
accuracy and thereby to reach the anticipated singular structure. 

A significant advance was made by Van Dommelen & Shen (1980) who pointed out 
that Lagrangian variables are ideally suited to the computation of unsteady 
boundary-layer flows that develop an eruptive character. In a conventional Eulerian 
formulation, the changes in velocities (u, v) are computed a t  a large number of fixed 
mesh points in the (x, y)-space as the flow evolves. The Lagrangian viewpoint is 
fundamentally different, wherein the velocities of a large number of fluid particles are 
identified at points on a spatial grid a t  some initial time ; the subsequent velocity and 
position of each fluid particle is then calculated as a function of time (and the initial 
starting location in the grid). A principal advantage of Lagrangian variables for the 
boundary-layer equations is that the streamwise momentum equation involves only 
the streamwise particle positions x and velocity u and not the normal coordinate y 
and velocity v. It is y and v which become large and eventually singular as a 
boundary layer evolves toward an eruption; at the same time, the computed 
quantities x and u both remain regular. 

Van Dommelen & Shen (1980, 1982) performed a numerical integration of the 
boundary layer on an impulsively started circular cylinder. For the first time, the 
terminal boundary-layer state was reached via an accurate numerical integration 
and the nature of the developing interaction with the outer flow was revealed. In the 
latter stages of the calculation, the boundary-layer flow focused into a band which 
was narrow in the streamwise direction and which forms on the upstream side of the 
recirculation zone. In the terminal state, the displacement thickness evolves toward 
a sharp spike which is infinitely long on the boundary-layer scale ; on the scale of the 
outer external flow, the ‘spike’ appears as a small sharp eruption at a point. Van 
Dommelen & Shen (1982) and Elliott, Cowley & Smith (1983) have obtained 
analytical solutions for the possible forms of the terminal singularity structure for 
two-dimensional unsteady boundary layers. The ‘spike ’ that developed in the 
displacement surface in the calculations of Van Dommelen & Shen (1980) was found 
to have a complex unsteady structure. As the boundary layer erupts, it bifurcates 
into three tiers consisting of: (i) a layer of O(1) y-thickness near the surface; (ii) a 
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layer of O( 1) y-thickness which moves rapidly away from the surface and forms the 
sides of the erupting spike ; and (iii) an intermediate vorticity-depleted zone which 
thickens like (t,-t)-f as t approaches the eruption time t,. The dynamics of the 
eruptive process is driven by the intermediate zone, within which the velocity is 
almost uniform. The theory of Elliott et al. (1983) suggests that this terminal 
boundary-layer structure, wherein the flow rapidly focuses into a narrow spike, may 
be a generic state reached by most unsteady two-dimensional erupting boundary 
layers. As the eruptive state is approached the boundary-layer solution becomes 
independent, to leading order, of the adverse pressure gradient in the mainstream 
flow which originally initiated the process. The onset of ‘spike-like’ behaviour in 
displacement thickness had been observed in a variety of different circumstances, 
including the boundary layer induced by: (i) a vortex convected in a uniform flow 
(Doligalski & Walker 1984; Chuang & Conlisk 1989; Conlisk 1989), (ii) counter- 
rotating vortex pairs (Ersoy & Walker 1985, 1986), and (iii) vortex rings moving 
toward a surface (Walker et a l .  1987). However, the latter computations were all 
carried out using an Eulerian formulation and it was generally not possible to 
continue the integrations all the way to the eruptive state (one exception is the series 
approach described by Cowley 1983). At present, Van Dommelen’s (1981) 
calculations for the circular cylinder appear to be the only ones to reach the terminal 
state described by Elliott et al. (1983). 

In the present study, a physical situation rather different from the impulsively 
started cylinder is considered, namely the unsteady boundary layer induced by a 
vortex above an infinite plane wall in an otherwise stagnant fluid. The motion is 
impulsively started from rest (Walker 1978) and the numerical solutions described 
herein were obtained in Lagrangian coordinates. Although the Lagrangian equations 
bear some similarity to the momentum equations in the Eulerian frame, it was found 
that conventional algorithms, to advance the solution forward in time, did not 
work well. Therefore an upwind-downwind alternating-direct-implicit (ADI) method 
was developed in this study. It is shown here that the boundary-layer solution 
ultimately evolves toward a sharply focused eruption and to a terminal state 
virtually identical to that described by Elliott et al. (1983). 

The vortex-induced separation problem is also of physical interest in relation to 
the regenerative processes that take place in turbulent boundary layers and in flows 
undergoing transition to turbulence. For a fully developed turbulent boundary layer, 
the convected hairpin vortex (Head & Bandyopadhyay 1981; Acarlar & Smith 
1987a, b;  Walker et al. 1989; Smith et al. 1990, 1991 ; Walker 1990a, b) appears to be 
the dominant flow structure. As this vortex moves near the wall it is able to provoke 
a discrete eruption of the viscous flow below in an event usually known as bursting 
(Smith et al. 1990, 1991 ; Walker 1990 b). Similar phenomena also occur in transition. 
The situation considered in this paper is the simplest case of a vortex-induced 
eruption and a number of experiments (Harvey & Perry 1971; Chu & Falco 1988; 
Walker et al. 1987) have clearly shown the general features of the subsequent 
interaction. In a turbulent boundary layer, the eruptive activity is three-dimensional 
in which the boundary layer erupts along a crescent-shaped ridge (Smith et al. 1990, 
1991 ; Walker 1990b; Van Dommelen & Cowley 1990); however, the process may be 
viewed as quasi-two-dimensional in the sense that in a plane normal to the ridge, the 
eruption is similar to the two-dimensional situation. Consequently the model 
problem considered in this study seems representative of the physical processes that 
take place in more complex environments and also is illustrative of the numerical 
difficulties inherent in computing an erupting boundary layer. 
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2. Formulation 
Consider a rectilinear vortex of strength K which is located in an otherwise 

stagnant fluid above an infinite plane wall ; at t = 0 the vortex is located at a distance 
a above the wall as indicated in figure 1. Inviscid theory (Walker 1978) predicts that 
a vortex of positive rotation (as shown in figure 1) is convected in the velocity field 
of its image, consequently moving to the right with constant velocity given by 

v, = K/2a, (2) 

and remaining at constant height, a, above the wall. The inviscid solution is not 
uniformly valid, however, and a thin unsteady boundary layer develops along the 
wall in order to satisfy the no-slip condition. The boundary layer has a thickness 
O(Re-f), where the Reynolds number may be defined by 

Re = aK/v ,  (3) 

and v is the kinematic viscosity. Dimensionless variables are defined in terms of the 
length a,  the self-convection speed V,, and the timescale (a/V,). Furthermore, since 
the boundary layer develops in response to the moving vortex, it is convenient to 
transform to a frame of reference which moves uniformly with the vortex, In this 
frame, the wall moves to the left with velocity - 1, and the mainstream velocity 
induced at the boundary-layer edge is steady and given by (Walker 1978) 

U,(X) = - 1 + Ue(X), 
4 

Ue(X) = - 
X2+ 1. (4) 

Here x measures streamwise distance in the convected frame relative to the location 
at  the vortex core at  x = 0. 

For the boundary-layer flow, a scaled normal velocity v and coordinate y are 
defined in terms of the corresponding physical quantities I' and Y by (1). In  the 
conventional Eulerian formulation, the two-dimensional boundary-layer equations 
are 

au au au dU, a2u 
at ax ay dx ay2 
-+u-+v-= urn--+-, 

au av 
ax ay 
-+- = 0, 

where u is the velocity in the x-direction. The boundary conditions are 

u =  - 1 , v = O  a t  y = O ;  u+U,(x) as y+co, (7) 

where U,(z) is given by (4). For the limit problem Re --f co, the vortex is always 
located at  x = 0, Y = 1 in the convected reference frame and the mainstream flow is 
steady. In part 2 of this study (Peridier, Smith & Walker 1991), interactive boundary- 
layer solutions at  finite Re will be considered, where the thickening boundary layer 
alters the vortex trajectory and the external flow is therefore also unsteady. 

The problem described by (4)-( 7) was originally considered by Walker (1978) who 
assumed that the motion was initiated impulsively from rest. Numerical solutions for 
the developing boundary-layer flow were obtained in terms of a stream function 
Y(x, q, t )  defined by 

av 
u = -l+Ve(x)-. 

a t  
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Here r“ is a Rayleigh variable defined by 

which accounts for the fact that the boundary layer thickens proportional to ti after 
the impulsive start. The numerical results of Walker (1978) showed that a 
recirculating eddy developed in the boundary layer a short time after the start of the 
motion (at t = 0.281) as a consequence of the adverse pressure gradient imposed by 
the vortex. With the passage of time, the region of recirculation grew in both the 
streamwise and normal directions and eventually the boundary-layer flow entered a 
phase where rapid growth began to evolve on one side of the recirculating eddy. At  
this stage the displacement thickness distribution became almost vertical locally 
with an intense variation in the streamwise direction developing at this location. This 
behaviour is typically observed in unsteady boundary-layer flows which are 
proceeding toward a strong viscous-inviscid interaction with the external flow (see, 
for example, Doligalski & Walker 1984; Ece et al. 1984; Walker et al. 1987). It is 
characterized by a rapidly strengthening outflow from the boundary layer over a 
thin zone which progressively narrows in the streamwise direction (Van Dommelen 
& Shen 1982; Elliott et at?. 1983; Cowley, Van Dommelen & Lam 1990). For this 
reason it proves impossible to adequately resolve such phenomena using a fixed mesh 
in the (x,y)-plane and the conventional Eulerian description of the flow. For the 
problem of interest here, it was difficult to continue the numerical integrations much 
beyond t = 0.75 with good accuracy using the Eulerian approach, despite various 
attempts to do so (Walker 1978). In the present study, Lagrangian variables were 
used to continue the numerical integrations up to the evolution of a singularity and 
the onset of interaction with the external flow. 

In the Lagrangian description of the boundary-layer motion, the coordinates (5,~) 
of a large number of fluid particles at  some initial instant in time are used as 
independent spatial variables. The current position of each fluid particle (x, y) (as 
well as its velocity components u, v) are functions of ( & 7 ,  t ) ,  corresponding to where 
the particle originally started and the elapsed time along its trajectory respectively. 
The transformation from Eulerian to Lagrangian coordinates is given by (Van 
Dommelen 1981 ; Peridier & Walker 1989) 

71” = y /2 t t ,  (9) 

and the substantive derivative becomes a Lagrangian derivative in time. As 
originally pointed out by Van Dommelen & Shen (1980), the boundary-layer 
momentum equation corresponding to ( 5 )  is the system 

(F:q &y au 
- = urn U’,(x)+ ----- 
at 

ax 
at 

u, 

-- - u, 

for the dependent variables x(E, 7, t )  and u(& 7,  t ) ,  describing the current streamwise 
location and velocity of each fluid particle. In (l l) ,  U,(x) and its derivative are known 
functions of x obtained, in general, from a solution of the outer inviscid problem. The 
initial conditions for this system are that the streamwise velocity distribution is 
known at  some initial instant t = to, namely 

u = u0(& 7) at t = to (13) 



106 

for known fluid particle locations in the boundary layer 
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45, 'I, t )  = 5, Y(597, t )  = 'I at t = t o .  (14) 

The boundary conditions for (1 1) are that the streamwise velocity must match the 
mainstream for large 7 according to 

u(E,'I,t)+Um(x) 8s 7 + W ?  (15) 

and that fluid particles originally on the wall remain there (in view of the no-slip 
condition), namely 

u = - 1  at 7 = 0 .  (16) 

One of the principal advantages of the Lagrangian description is that (1 1) and (12) 
do not contain the dependent variables corresponding to the normal particle 
positions y and velocities w ;  it is these quantities which become large (and eventually 
singular) as a boundary layer moves toward a strong interaction with the outer flow, 
thus giving rise to considerable difficulties in numerical solutions within the Eulerian 
formulation. By contrast, it is believed that the streamwise particle positions 2 and 
tangential velocities u remain regular (Van Dommelen 1981), even as the boundary 
layer evolves toward an eruption. The flow development is computed by advancing 
the solution of (11)  and (12) forward in time numerically. At any stage, the normal 
distance y((,q, t )  may be computed as a solution of the continuity equation 

in Lagrangian coordinates. If at any time t the streamwise particle positions x(6, 7, t )  
are known from a numerical solution of the system (11) and (12), the normal 
positions y(& 7, t )  may be computed from (17) which is a first-order equation having 
the characteristics 

which 

where 
(6, 7), 

are curves of constant x. A n  integral of (18) is 

the integral is along a path of constant x which passes through the point 
denoting a specific fluid particle; the lower limit on the integral in (19) 

corresponds to the location where the specific constant-x contour passing through 
(5,~) originates on the wall. Thus, the normal distance from the wall of a fluid particle 
at time t which started at ((,'I) a t  some initial instant t = to is given by (19). It is 
evident that if a stationary point develops in the x-field at some subsequent time t,, 
namely 

then (19) shows that a singularity has evolved in the boundary-layer solution. In 
physical terms, (17) expresses conservation of mass and when a stationary point in 
the x-field develops, the implication is that the fluid particle which started at (t,, 7,) 
has been compressed to zero thickness in the streamwise direction. By continuity, 
the fluid particle must then grow substantially in a direction normal to the wall. 
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Since the boundary-layer equations do not contain terms describing the influence of 
normal pressure gradients and viscous diffusion, there is no resistance to this 
distortion (Cowley et al. 1990) and a portion of the fluid particle is therefore 
ultimately located at an infinite distance from the wall. Consequently, the normal 
velocity is also singular at this streamwise location and as the boundary layer erupts 
(over a region of zero streamwise thickness), fluid particles above the flattened 
particle that originated a t  (E,, 7,) are thrown out into the inviscid region. 

3. Transformation to a finite domain 
In a numerical solution of the boundary-layer problem in Lagrangian coordinates, 

it is convenient to work in terms of independent variables defined on a finite range 
as well as a dependent variable which ranges from 0 to 1 across the boundary layer. 

(21) 

6 7 dependent variable is defined by I 

~ ( 5 , 7 ,  t)  = - 1 + ue(x) u(5,7, t ) ,  

where U, is defined by (4). To satisfy conditions (7), the function U must satisfy 

U(&O,t) = 0 lim U(t,q,t) = 1. 
Il+m 

The independent variable 6 is defined on the range ( - a, 00) but may be transformed 
to the finite range (2,O) by the Gortler-type transformation (Walker 1978) 

2 5 = l---arctan~. (23) a 

In  this new coordinate, g = 0 corresponds" to upstream infinity, = 1 to the 
streamwise location of the vortex centre and 6 = 2 to downstream infinity. A similar 
transformation may also be adopted for the dependent variable x(E,q,t) to yield a 
new variable P, again defined on the range (2,O) according to 

(24) 
2 P = I--arctanx. 
a 

In  terms of P, the mainstream velocity function defined in (4) becomes 

U,(P) = 2( 1 - cos 7cP). (25)  

Lastly, the independent variable 7 is defined on the range ( 0 , ~ )  and a convenient 
mapping to the finite range (0 , l )  is 

(26) 
2 9 = -arctan 7. 
a 

When the transformations (21), (23), (24) and (26) are made in the Lagrangian 
boundary-layer equations (11) and (12), it  may be shown that the equations for U 
and P are of the form 

(27) 
au azu a w  a w  au au _-  - R-+S-+ T-+ P y  + Q-+ WU+ r, 
at ag" agag a+jz a7 a5 

as u,(P) 
-= -{l-u,(P)U(E,g,t)}. 
at 2~ 
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(32) 
1 

27c 
w = --{l - U J 2 )  u(g, f ,  t ) }  Ve(2), 

In these equations, a prim? denotes an ortinary derivative with respect to the 
indicated variable and a(& 6 ,  f ) ,  p( f )  and y(fJ are defined by 

a($, l, f )  = ue(t)z(f)/ue(2), (34) 

where Z ( f )  = (1  +cos7cf)/n (36) 

P C ~ )  = z ( f ) / z ( i )>  ~ ( l )  = K(i)/ue(t), (35) 

and U, is given by (25). 
In the present study, the boundary-layer development was calculated by 

computing the initial development after the impulsive start using a conventional 
Eulerian formulation in the manner described by Walker (1978). A t  a selected time 
t = to, the calculation was switched to the Lagrangian formulation. The initial 
conditions for (27) and (28) are 

P = 6, A U =  ~~(l , i j )  a t  t = to, (37) 
where Uo may be evaluated a t  each nodal point from the Eulerian solution (carried 
up to the switch time t o ) ;  alternatively, if the Lagrangian formulation is used 
starting at  the impulsive start at t = 0, Uo = 1.  Boundary conditions for the system 
(27) and (28) for t > to are 

U(l,O,t) = 0, U ( t ,  1,t)  = 1, (38) 
2(0, f ,  t )  = 0, 4 2 ,  f ,  t )  = 2. (39) 

The conditions (39) state that fluid particles which are initially at downstream or 
upstream infinity remain there. The 2 particle positions along the wall and a t  the 
mainstream may be obtained at any value oft through integration of (28) using (38). 
Fluid particles on the wall (or at an infinite distance from the wall) remain there but 
their streamwise positions change with time. It is possible to obtain analytical 
solutions for f on the wall and a t  the mainstream and, for example, 

on the wall. Finally, at upstream and downstream infinity, the coefficients in (27) 
assume limiting forms independent of t  and it can be shown that, 
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This completes the formulation of the boundary-layer problem in Lagrangian 
variables and the numerical solution procedure used to solve (27) and (28) is 
described in the next section. 

4. Numerical methods 
The form of the boundary-layer equation (27) in Lagrangian variables is similar to 

the corresponding form in the Eulerian description (Walker 1978) in that both are 
second-order parabolic partial differential equations. However, the characteristic 
behaviour of the resulting difference equations was found to be quite different. In  the 
standard Crank-Nicolson procedure (Walker 1978), (27) is approximated midway 
between the current and previous time plane and spatial derivatives are 
approximated by conventional central differences. In this manner a set of nonlinear 
difference equations is obtained at  each internal meshpoint. A conventional method 
of solving this equation consists of a systematic point-by-point sweep of the mesh at  
each time step. This procedure works very well for calculations based on the Eulerian 
description of the motion (Walker 1978) but failed to converge when applied to the 
Lagrangian equations, as soon as significant updraughts began to develop in the 
boundary-layer flow (Peridier & Walker 1989). Although it was found that the 
convergence could be enhanced somewhat by altering the pattern in which the mesh 
was swept, the conventional Crank-Nicolson method was considered too time 
consuming and abandoned (see also Van Dommelen 1981). 

Another popular approach that was also unsuccessful in the present application is 
the factored alternating-direction method due to Beam 6 Warming (19781. In this 
algorithm, (27) is factored into two operators on U ,  one in each of theAE- and Q- 
directions. A sequence of tridiagonal problems, along lines of constant and then 
lines of constant Q (or vice versa) is computed at  each time step. The Beam & 
Warming (1978) algorithm is explicit in the sense that calculations involve only one 
sweep in each coordinate direction and iteration is not carried out at each time step. 
In  the present study, the Beam & Warming algorithm was found to work well at 
early times and to produce answers consistent with the conventional Crank-Nicolson 
method. However, at subsequent times the method produced results, which upon 
close examination of the contours of constant D and U,  were judged to be erroneous. 
The failure of the method is believed due to the fact that, as strong updraughts begin 
to develop in the boundary layer, the tridiagonal problems in each of the coordinate 
directions eventually lose the property of diagonal dominance, and this results in a 
numerical instability in the method. It should be noted that the Beam & Warming 
(1978) algorithm is commonly applied to time-dependent problems in which the 
objective is to compute the flow evolution through to steady state and for which the 
level of time-dependence is continually diminishing. In the present application the 
reverse situation applies and variations in time become progressively more intense 
as the boundary layer evolves toward an eruption. 

In view of the failure of conventional numerical procedures, which had previously 
worked well in Eulerian formulations, i t  was necessary to develop an alternative 
procedure. The method described here is a factored AD1 (Alternating-Direction- 
Implicit) scheme in which ' upwind-downwind ' differencing of the first-order partial 
derivatives was carried out to  ensure that the tridiagonal matrix problems in each 
of the coordinate directions were diagonally dominant. The method is second-order 
accurate in both spatial directions and in time and was found to be very effective in 
calculating the solution of the Lagrangian boundary-layer equations, particularly in 
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the latter stages of the integrations, when convection effects are dominant in a locally 
eruptive zone and where the coefficients of the first derivatives in (27) become large. 
To describe the progress of the algorithm through a time step, assume that the 
solution for U is desired at time t and that the solution in the previous time pl$ne 
(denoted by U*) a t  time t* = t -  At is known. Suppose that the spatial domFin (&$) 
is subdivided in a mesh with (M-1) and (N-1) equal intervals in the E- and f -  
directions respectivelyA and let subscripts i, j denote functional values at  a typical 
point in the mesh at (ti, $,). Equation (27) is first approximated at  the typical point 
in the mesh midway between the current and previous time plane a t  l= t* + (aAt) to 
obtain 

which is accurate to O(dt2). Here U,, ,  denotes the simple average 

ui,, = Wi,,+ q,). (43) 

In (42) the overbar denotes quantities evaluated at  l which may be related to the 
corresponding terms in the previous and current time planes by a simple average, 
and 

for example. It may be noted from (29)-(32) that the quantities R,,,, S,,,, T,,,, pt,,, 
Qi,,, and &,, depend on U,,,, and in the present approach are treated as known 
distributions which are updated continually as an iteration takes place at  each time 
step. 

In a conventional Crank-Nicolson approach, the spatial derivatives in (42) are 
evaluated using central differences and the resulting difference equations are solved 
iteratively for the U,,,. However, when c,, and &,,, become large locally, the matrix 
problem can suffer a loss of diagonal dominance which may lead to divergence of the 
iteration. To overcome this problem, ' upwind-downwind ' differencing may be used 
for the first-derivative terms in the manner described by Doligalski & Walker (1978, 
1984) (see also Van Dommelen & Shen 1980) wherein, for example, 

- e,, = -( ; &+PZ,h (44) 

This approximation is second-order accurate in both At and A4 and acts to enhance 
the diagonal dominance of the system of difference equations. The approximation in 
(45) slants between the current and previous time plane in a manner dependent on 
the local sigq of the coefficient e,,. A similar approximation can also be made for 
Qi,i  (aDi,,/a6) which depends on the local sign of Qi,,. To facilitate the factoring 
of the difference equations, it is convenient to express the upwind-downwind differ- 
encing in a compact form (Peridier & Walker 1988) by introducing the operators 
x;, x;, xi, x? defined by 

(46) 

(47) 

xt- + - 8 ?j Etsgn(Pt, j) ,  0 x; 11 = 8.E;fsgn(Qi.j) 1 1 1 1  

xe- + - 8 e EtSgn(Q'.j), s  ̂ X? = 8eEptSgn(Qt,j). 

Here Ei and Et are the finite-difference enlargement operators in each of the 
coordinate directions given by 

Ebi U ( ( , f )  = U((+aA(, $), EQ; U(( ,  4) = U ( f ,  f +;A$) (48) 
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(as described in the Appendix) and 8, and 8$ are the central-difference operators 

(49) 6, = I&- EA, 8,. = E$ - ~ ; i  
E t  T 7 '  

In addition, the function sgn (2) is either 1 or - 1 depending on whether x is positive 
or negative respectively. In terms of the operators defined by (46) and (47), the 
upwind-downwind differencing for the first derivatives in (42) may be written 

The remaining second-derivative terms in (42) were approximated using the usual 
central-difference expressions according to 

Here p, and p,. are the averaging central-difference operators defined by 

pi = KE!+ ~ $ 1 ,  pf = ;(ES + E?). (55) 

Upon substitution of (50)-(55) into (42) and factoring the spatial-difference 
operators, it can be shown that 

where (57) 

and 

Two points should be noted. First, (56) is not identical to (42) and differs by a term 
O(At2); however, this latter error is of the same order of magnitude as incurred in the 
original difference approximation (42) and may thus be neglected. Secondly, Dt,, 
generally involves differences of known quantities in the previous time plane, with 
the exception of the 1:st term in (58) which arises from the approximation to the 
cross-derivative a2U/a6a$ ; the difference approximations to this term are not easily 
factored and were evaluated on the right-hand side of (56) as part of a general 
iterative procedure at each time step. 
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problems by introducing an intermediate variable 0,,, such that 
Equation (56) can be solved as an ordered sequence of tri-diagonal matrix 

To initiate an iterative s@ution for U f s ,  in the current time plane: (60) was used to 
provide values of at,, on 6 = 0,2  and (59) was then solved systematically along lines 
of constant $ using the Thomas algorithm to provide a direct solution for each 
tridiagonal problem for Upon completion of the first sweep of the mesh, the 
sFquence of tridiagonal problems defined by (60) was solved along lines of constant 
6. This second sweep of the mesh completed the first iteration for Ui,, and the 
streamwise particle positions in the current time place were estimated from the 
difference approximation to (28). 

Here ot,, is given by (43) and 
7 

xi,, = wi,,+q,,. 
Note that at the first iteration, Z i q 5  in (62) and Ui, ,  in (43) were approximated by the 
corresponding quantities in the previous time plane. Once each iteration was 
completed, the coefficients in the momentum equation (27), R,,,, S,,,, zs5.. . given by 
(29)-(32) were updated. The entire process was then repeated until successive iterates 
of Ui,5 converged a t  every node with a relative error of less than lop4, at which point 
the integration was advanced to the next time plane. Although testing for 
convergence on 2f,i was also carried out, this is generally not necessary and 
agreement to four significant figures in U is normally a sufficient indication of overall 
convergence. It is noted in passing that a line iteration technique similar to the 
present AD1 method was used in a Lagrangian calculation by Lam (1988). 

Numerical solutions were obtained in both the Eulerian and Lagrangian systems. 
The calculations were started at t = 0 with an impulsive start condition and initially 
were advanced in time using the Eulerian formulation described by Walker (1978). 
A t  t = to, the computed streamwise velocity distribution was used to initiate an 
integration in Lagrangian variables forward in time. Various values of to were used 
as a check on the accuracy (including to = 0) in order to cross-compare the results of 
the two integration methods ; as expected, the specific value of to had no effect on the 
actual computed results. The time to = 0.25 is a convenient point to switch, since the 
normal coordinate y is equivalent to the Rayleigh variable (9) a t  that time. In 
addition, the Eulerian integration can be continued to around t = 0.7 without 
difficulty (Walker 1978), and thus a switch at to = 0.25 provides a good intermediate 
range to compare the results of both integration procedures. Calculations in the 
Lagrangian frame can be continued until t ,  = 0.989 when a singularity develops in 
the boundary-layer solution; in fact, it  is possible to continue the numerical 
integrations for t > t, in the Lagrangian coordinates even though such results are nof 
physically meaningful. Solutions were carried out for three sets of mesh sizes which 
are summarized in table 1 ; here, for example, 201 x 101 implies that there is a total 
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Mesh 1 
Time (61 x 41) 

0.2500 0.0100 
0.5500 0.0010 
0.7500 0.0010 
0.8250 0.0010 
0.8600 0.0005 
0.9500 0.0005 

Mesh 2 
(101 x 61) 

0.0010 
0.0010 
0.0010 
0.0010 
0.0005 
0.0005 

Mesh 3 
(201 x 101) 

0.0010 
0.0010 
0.0005 
0.0002 
0.0002 
0.0001 

TABLE 1. Time steps used in the integrations ; the Eulerian method was used up to t = 0.25 and the 
Lagrangian method thereafter. The entries indicate the time step At initiated at the given time. 

of 201 and 101 points in the i- and $-directions respectively. The calculated results 
were in good agreement between three sets of meshes. One feature of the Lagrangian 
equations is that as the spatial mesh size is reduced, it is necessary to decrease the 
time step as indicated in table 1 in order to avoid stability problems. It should be 
noted that when numerical instabilities do develop in the Lagrangian integrations a 
catastrophic failure of the algorithm does not occur. Rather the integrations proceed 
in an apparently normal manner. In the present study, contours of constant D and 
U were plotted periodically during the course of the integrations to  ensure 
smoothness in the results. When physically unrealistic ‘wiggles ’ in the contours were 
noted, the calculations were started at an earlier time with a reduced time step. The 
time steps listed in table 1 were determined in this manner. Consequently, the onset 
of numerical instabilities was suppressed in this study by trial and error and by 
taking very small time steps. Unfortunately, a way of automatically selecting the 
time step was not found, and thus there was essentially no immediate warning when 
a problem started to occur in the integrations; eventually the number of iterations 
at each time step does start to increase when instabilities occur, but this is usually 
many time steps after the first appearance of ‘wiggles’ in the computed results. 
Lastly, it should be noted that as the boundary layer starts to focus toward an 
eruption in the final stages of the integrations, a severe reduction in the time step is 
generally necessary. 

5. Evolution of the singularity 
A revealing feature of the developing boundary layer in Lagrangian coordinates is 

the behaviour of the contours of constant x, or equivalently constant 2. As discussed 
in $2, a singularity occurs in the boundary-layer solution when the 2-field develops 
a stationary point according to (20) ; in terms of the variables defined in (23), (24) and 
(26), a stationary point occurs at t = t, when 

At the initiation of the Lagrangian calculation D = i, and it is of interest to determine 
how the condition (63) eventually evolves. In figure 2 (a)  the contours of constant 2 
are plotted at t = 0.45. The specific values of D are not important in figure 2 but the 
shapes of the contours are. A t  the initiation of the Lagrangian integration at to = 
0.25, each constant &contour is a vertical straight line; by t = 0.45 these lines have 
distorted to the pattern shown in figure 2 ( a ) .  The physical interpretation of these 
contours is that they represent the initial location of a line of fluid particles which at 
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this time have now all arrived at constant x. Fluid particles on the wall remain there 
and are transported to the left yith constant velocity - 1 (in the convected frame). 
Far from the vortex, 77, + 0 as f --+ 0 , 2  and the fluid particles experience an almost 
constant drift to the left ; thus, the constant 4 contour! are almost straight lines. On 
the other hand, in the region near the vortex centre at f = 1, the constant4 contours 
show considerable distortion and indicate that the fluid particles have experienced a 
drift to the right in the interval from t = 0.25 to t = 0.45, which is most pronounced 
in the upper part of the boundary layer. This behaviour is expected due to the action 
of the vortex above. As t increases, the trends noted in figure 2(a)  continue as 
indicated in figure 2 (b) at t = 0.85. Here it may be observed that a small ' thumb-like ' 
region has formed which may only be accesFed by constant-8 contours that originate 
on the wall in a very narrow range near f = 0.75. It is within this 'thumb' that a 
stationary point finally develops at t, = 0.989 at the location shown in figure 2(c). 

One advantage of the Lagrangian formulation is that the criterion (20) or (63) for 
the formation of a singularity is well defined. At the same time there are a number 
of practical difficulties associated with accurately estimating where and when in 
( f , q )  -space the singularity actually occurs. In this study, the value of t, was 
estimated by tracking the minimum of a gradient-norm function 

which must tend to zero as t+ t , ,  and also by determining when the position of this 
minimum intersected the zero-vorticity line. Initially N is unity everywhere, but 
with increasing t an absolute minimum developed in the N-distribution which was 
subsequently observed to decrease monotonically. At each time step, the 
N-distribution was evaluated numerically using conventional central-difference 
approximations and the mesh point where N was a minimum was located. The 
precise location of the absolute minimum was located by representing the surface 
locally as a paraboloid (Peridier & Walker 1989) and locating the coordinates of 
the minimum (tM,ljM) using the conditions 

This procedye accurately evaluates (f,, 3,) at each time t and eventually gives the 
location of (f,, 3,) as t -+ t,. However, it is difficult to estimate the value of t, using 
only this approach for the following reason. The quantity N is, by definition, non- 
negative for all t and the singularity occurs when the N-surface first touches the 
plane N = 0. However, because the gradients in (64) were evaluated numerically, 
they are never identically zero owing to discretization error. In  practice, the 
minimum in N was observed to decrease monotonically butAnever quite reach zero. 
At a certain stage, the M-surface started to flatten near ([,,&) and thereafter a 
spreading zone of almost zero N was noted. In  fact, it appeared to be possible to 
continue the Lagrangian integrations well beyond the stage when it was suspected 
that a singularity has developed. For this reason, it is important to introduce an 
additional criterion to determine t,. 

The vorticity o = -i3u/i3y, and in Lagrangian coordinates 
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In  terms of the present variables 
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In accordance with the MRS model, the singularity is expected to form on the zero- 
vorticity line a t  a finite time, and it is evident from (20), (63), (66) and (67) that 
w = 0 at the singular location. In the present problem the adverse pressure gradient 
due to the vortex induces a region of recirculating flow in the boundary layer a t  t = 
0.281, and thereafter a line of zero vorticity is present within the boundary-layer 
flow. The singularity is expected to form somewhere along this liqe, and it is possible 
to identify t,  as that time when the absolute minimum in JV at (tM, eM) is located on 
the line w = 0. To locate the zero-vorticity line at any time t, the vorticity at  each 
node in the mesh was computed from (67) using second-order-accurtte central- 
difference formulae. A set of points (or, alternatively, fluid particles) ([, $), where 
w = 0 wash then obtained by systematically sweeping the mesh along lines of 
constant [ and constaqt $ and using linear interpolation. The fluid particle 
closest to the particle (fM,dM) a t  the minimum in JV was then determined. The 
distance between these two points was observed to decrease monotonically to very 
small values a8 t-+t,. Using this criterion, it proved possible to obtain a reliable 
estimate of t,. Thus, near the end of the integration 

Here (is, $,), or equivalently ( f ,  T , ) ,  denotes the specific fluid particle which becomes 
squashed in the streamwise direction and in the process extends an infinite distance 
from the wall (on the boundary-layer scale) as the eruption develops. The normalized 
velocity Us of this fluid particle is then easily evaluated from the numerical solution 
(Peridier & Walker 1989). 

The best estimate oft, is based on the smallest set of mesh sizes used (see table 1) 
and 

which is also consistent with the values obtained with the other two meshes. Note 
that a larger (and incorrect) value oft, was reported in the preliminary results of 
Peridier, Smith & Walker (1988). The best estimate of the streamwise location of the 
singularity is at is = 1.134 or in terms of the physical coordinate x, 

t, = 0.989, (69) 

X, = -0.214, (70) 

U =  -K (71) 

which is therefore to the left of the vortex centre. Elliott et al. (1983) use the notation 

to denote the velocity of the squashed fluid particle at the eruption time. A positive 
value of K implies that, for a stationary wall, the separation is moving upstream ; for 
the impulsively started circular cylinder, Van Dommelen & Shen (1980) found K = 
0.26 and classified the situation as ‘upstream-slipping separation ’. In the present 
problem, the wall moves continuously upstream in the vortex frame and the 
streamwise velocities are relative to this frame. The value of K is calculated from 

-K = - 1 + U,(i , )  us, (72) 
where Us is the independent variable U evaluated at  (E,,v,) at t = t,. The best 
estimate for K is 

K = 0.521. (73) 
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Consequently, the separation is moving upstream in the vortex frame (from right to 
left) at the instant of the boundary-layer eruption; note that the terminology 
‘upstream’ is used here to imply a direction opposite to the local mainstream 
velocity. It should be noted that the wall is moving in the vortex frame and this does 
present a difficulty in classifying the separation; however, it appears that the 
relevant criterion here is the motion of the separation relative to the local external 
mainstream direction. Thus, this situation may also be thought of as corresponding 
to what Van Dommelen (1981) has referred to as ‘ upstream-slipping separation ’. 

6. Calculated results 
The nature of the flow evolution may be understood through examination of the 

instantaneous streamline patterns as time progresses as well as the behaviour of the 
displacement thickness. These quantities are relatively easy to evaluate from the 
results of an Eulerian computation but require some additional effort to extract from 
Lagrangian data. First it  is necessary to evaluate the y particle positions. In 
accordance with (26), define a transformed variable $ on the finite range (0 , l )  by 

2 $ = -arctan y. 
R 

In  terms of this variable, the continuity equation (17) becomes 

(74) 

where Ue and 2 are defined in (25) and (36) respectively. If at any time t ,  P(g, .;l, t )  is 
known from a solution of (27) and (28), it is evident that (75) is a first-order equation 
for $. The characteristic curves are P = constant and the subsidiary equations are of 
the form 

where (77) 

and s” is a parameter along the characteristic ZA= constant. Generally, the integration 
of (76) is initiated at some selected value of 6 on the wall where $ = 0. On the wall 

x = 6- ( t - to) ,  (78) 

which from (23) and (24) fixes f for a specific choice of at time t .  The integration 
of (76) was accomplished using a second-order predictor-corrector metho+ (Peridier 
& Walker 1989). This integration generates a sequence of points (tk,.;l”) and 
corresponding values gk which define a specific contour f = constant. If Ak and Bk 
denote the coefficients in (77) evaluated at the kth point on the contour, the step size 
in s” was selected so that 

A l  As” = 
[(Ak)z + (Bk)z]i * 

(79) 

This criterion restricts the step along the curve f = constant to a mesh length in 
and was judged to be small enough to ensure an accurate evaluation of 9. 
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A stream function Y may be defined in terms of the velocity u in the vortex frame, 
as well as a subsidiary stream function 4 in terms of U ,  by 

and it follows from (21) that 

In terms of the transformed coordinate (74) 

and $ and Y were evaluated as follows. As the integration of (75) proceeds up a 
particular characteristic i = constant, values Of 6 were obtained at a sequence of 
points along the characteristic; values of @ were obtained along this same 
characteristic by integrating (82) in a step-by-step manner using a procedure based 
on the trapezoidal rule. A t  each point along the characteristic, values of y (from (74)) 
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FIQIJRE 3. Temporal development of the instantaneous streamline patterns in the vortex frame. 
(a) t = 0.25; ( b )  t = 0.45; (c) t = 0.75; (d )  t = t, = 0.989. 

and $ may be used to yield values of Y in (81). By performing this same type of 
calculation along a number of characteristics, values of Y were defined throughout 
a mesh in the (x, y)-plane and evaluation of contours of constant !P produces the 
instantaneous streamlines. 

The flow patterns at  t = 0.25 are shown in figure 3(a)  in a frame of reference 
convecting with the vortex, in terms of the physical coordinate x and boundary-layer 
coordinate y. At this stage the flow pattern is almost symmetrical consisting of: (i) 
motion from upstream infinity upward and toward an outflow stagnation point in 
the mainstream at x = 4 3 ;  (ii) motion downward and away from an inflow 
stagnation point a t  x = - 1 / 3  and (iii) an inflow, then outflow underneath the vortex 
itself. In the vortex frame the wall moves to the left with a speed of unity and there 
is a single stagnation point near x = -0.3 just above the wall. A recirculating eddy 
appears in the streamline patterns at  t = 0.281 (Walker 1978) and may be observed 
at a later stage of development in figure 3 ( b )  at t = 0.45. The eddy thickens rapidly 
in the streamwise direction and then starts to grow in a direction normal to the wall 
as may be seen in figure 3 (c) at t = 0.75. The streamlines on the left side of the eddy 
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FIQIJRE 4. Temporal development of the displacement thickness ; plotted curves 
are at t = 0.25 (0.10) 0.95 and t, = 0.989. 
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run very close there and this is an indication of an intense variation in the flow field 
which is developing locally. From a physical standpoint, the eddy gives rise to a 
blocking effect as the boundary-layer fluid, under the action of the pressure gradient, 
is deflected upward and forced to climb over an expanding zone of recirculation. This 
effect gives rise to increasing normal velocities near the left side of the eddy and the 
progressive formation of what appears to be a developing shear layer. The 
streamlines at  t = t ,  = 0.989 are shown in figure 3 ( d )  where a continuation of the 
aforementioned trends should be noted. In the interval from 0.45 to 0.989, the eddy 
has doubled in width but is almost four times larger in the vert,ical direction ; the 
eddy centre has also progressively moved away from the surface. One new feature in 
figure 3 ( d )  is that the streamlines at the top of the eddy have developed a 'spike ' and 
the recirculation zone is apparently being drawn into a zone of intense variation near 

The character of the boundary-layer growth may be illustrated through the 
displacement thickness, defined in terms of the velocity in the laboratory frame of 
reference by 

X, = -0.218. 

and it follows from (21) that 

or equivalently from (80) 

Thus, for a specific value of i, IS* was evaluated by computing the integral in (84) as 
the integration proceeded up the characteristic. The temporal development of 6* is 
shown in figure 4 in the vortex frame, where it may be seen that explosive boundary- 
layer growth finally occurs near x, = -0.214. The rather abrupt nature of the 
phenomena should be noted. Until around t = 0.85 the growing recirculating eddy 
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has caused significant but unremarkable thickening of the boundary layer over a 
streamwise extent O(1). However, in the interval between t = 0.85 and 0.989, the 
boundary-layer flow abruptly focuses into a band which is very narrow in the 
streamwise direction ; the maximum displacement thickness increases substantially 
during the interval and, on a scale where x = O(1), the local displacement surface 
appears as a sharp spike. As illustrated in figure 4, the phenomena develops and takes 
place in a frame of reference moving with the vortex ; an observer in this frame would 
see a very localized zone of relatively abrupt boundary-layer growth which appears 
to be moving upstream in its h a 1  stages. 

One point should be noted in connection with the calculation of 8*. In the early 
stages of the motion, the displacement-thickness distribution is relatively smooth 
and can be defined by computing 8* along a number of characteristics corresponding 
to the number of subdivisions in the [-mesh. HowFver, an integration along a 
characteristic may be started a t  any location on the 6-axis and, in the latter stages 
of the integration when 8* develops a spike, it  was necessary to compute many 
additional characteristic contours. This was carried out using a systematic resolution- 
enhancement procedure near the contour $ = $, in order to accurately represent &* 
in figure 4 as well as to locate the ‘tip ’ of the spike. 

7. The terminal structure 
Once a stationary point occurs in ~ ( [ , y , t ) ,  a singularity has developed in the 

solution of the boundary-layer equations. Van Dommelen (1981) and Elliott et al. 
(1983) have investigated the structure of a class of possible singularities and what 
follows is a description of their results in terms of Eulerian coordinates. As a 
boundary layer proceeds toward an eruptive interaction of the type depicted in figure 
4, the layer bifurcates locally near x,  into three zones which are shown schematically 
in figure 5 (a). It should be noted that in the numerical integrations, the entire zone 
depicted in figure 5(a )  appears for the most part as a spike on a scale where 2-2, is 
O(1). Thus, the schematic in figure 5(a)  should be interpreted as having a 
considerably expanded scale in the 2-direction in order to show the internal structure 
of the erupting ‘spike’ depicted in figure 4. The local dynamics are driven by a 
central region I1 sandwiched between two passive layers, one near the wall (region 
I) and one which moves rapidly away from the wall (region 111). The terminal 
solution in zone I1 is a function of the scaled variables 

2 - 2 , - K ( t s - t )  - x= , y = v,-qb, 
( t ,  - t)’ 

where y is the conventional boundary-layer variable (scaled with respect to Re; as in 
(1) ) .  The variable 2 measures streamwise distance in a coordinate system which is 
moving upstream with speed K (for K > 0) and whose origin arrives at  x ,  at time 
t = t ,  ; in physical space this region thins proportional to ( t s -  t)’ as t --f t i .  The variable 

measures normal distance from the wall in a region which is thickening explosively 
like (t ,  - t)- i .  Within zone 11, the streamwise velocity is given by 

(87) 
1 -  - 

u = - K + ( t , - t ) W ( X , F ) +  ... 
and consequently zone I1 is a vorticity-depleted region which is moving upstream 
(for upstream-slipping separation, K > 0) and where the flow is almost uniform. A 
solution for omay be obtained and details are given by Elliott et al. (1983). However, 
it should be noted that the equation governing 8 is nonlinear and inviscid; the 
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,9= 2Fn 

FIGURE 5. Schematic of boundary-layer structure near a point of eruption. (a) Structure near 
2, (not to scale); (b)  a typical velocity profile near 2 = x8 (for a stationary wall). 

solution is symmetric about a curve P = Po$) which can be found analytically and 
which bisects region I1 as indicated in figure 5 (a). The curve P = 2F0(%) thus defines 
the top of region 11. The velocity function 0 has a minimum at F =  at each 
2-station but increases to become large and positive at the top and bottom of 
region I1 ; in fact 

Note that in view of (88) and (89), the streamwise velocity in (87) starts to deviate 
progressively from -K as zones I and I11 are approached for fixed t, - t .  In general, 
the velocity is reduced to relative rest on the wall in zone I and is adjusted across the 
shear layer I11 to meet the positive mainstream velocity in the upper portion of the 
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boundary layer. A typical profile shape expected within the erupting spike is shown 
schematically in figure 5 ( b )  for a stationary wall. It an be shown (Elliott et al. 1983) 
that 

U =  o(.@ as ~r?l+co, 

and thus it may be inferred from (86) and (87) that u deviates progressively from -K 
at the streamwise extremities of the region depicted in figure 5 ( a )  in order to meet 
the conventional boundary layer to either side. 

An important aspect of the terminal singular structure described by Van 
Dommelen (1981) and Elliott et al. (1983) is that by the stage that an eruptive spike 
starts to develop, the local boundary-layer flow ‘forgets ’ the specific external 
pressure gradient which initiated the separation process ; that is, the equation 
governing 8 in the central zone I1 is independent of the mainstream pressure 
gradient. Consequently, the terminal structure appears to be a generic end state for 
all two-dimensional unsteady boundary layers that ultimately interact strongly with 
the mainstream, at least for the apparently common situation of ‘ upstream-slipping 
separation’. Van Dommelen & Shen (1982) have shown that the terminal state is 
realized in the case of the impulsively started circular cylinder and here it will be 
shown that the same state is reached in the present situation. 

It is worthwhile tracking the development of the equi-vorticity lines; w is readily 
evaluated from Lagrangian data using (67) and contours of constant w are shown in 
figure 6 at t = 0.45,0.75 and 0.95. In figure 6 (a)  at t = 0.45, it may be seen that a zero- 
vorticity line is present which touches the wall at  about x = 0.25 and x = 0.75; this 
line first appears with the onset of the recirculating eddy a t  t = 0.281. Between the 
wall and the zero-vorticity line, w is positive; elsewhere w is negative and actual 
magnitudes may be inferred from a plot of the wall shear (that will be shown in figure 
8), since all equi-vorticity lines begin and end on the wall. The maximum magnitude 
of vorticity in figure 6 ( a ) ,  for example, occurs in the contour nea,r x = -0.5 closest 
to the wall; the contours to either side have progressively smaller values of o. In  
figure 6 ( b )  at t = 0.75, it may be seen that the constant-w contours have deformed to 
start to form an inverted ‘V’ near x = 0 in the location labelled A. By t = 0.95, it may 
be seen in figure 6(c)  that most of the contours above x = -0.214 have developed 
this inverted V pattern which is now considerably stretched in the vertical direction. 
This development is consistent with the terminal structure sketched in figure 5 ( a )  ; 
the two sides of the inverted V, where the equi-vorticity lines are congregating, form 
the moving shear layer denoted as region I11 in figure 5(a ) .  Note that the erupting 
spike in figure 6 ( c )  appears to act as a sink, dragging the surrounding equi-vorticity 
lines into it. The region underneath the V is too narrow to be seen on the scale of 
figure 6(c)  but is the vorticity-depleted zone labelled region I1 in figure 5(a). 

In figure 7 the velocity profiles near x, are plotted just before t = t, across the 
boundary layer and these confirm the terminal structure shown schematically in 
figure 5(a) .  At x = x, the major part of the profile is almost flat and the boundary 
layer is very thick locally. A shear layer is present near the wall and in the upper part 
of the boundary layer to adjust the velocity from the uniform value of - K .  Note that 
in this case the wall is moving to the left and so the adjustment in the lower shear 
layer takes place from -K to - 1, as opposed to the schematic in figure 5 ( b ) ,  which 
pertains to a fixed wall, and where the adjustment is from - K  to 0. It should be 
noted that, though hardly visible in figure 7, there is a local maximum clearly 
exhibited in the numerical results for the velocity profile relatively near the wall, in 
addition to the minimum that is evident further out. It is believed that this 
maximum probably lies within the O(1) wall layer (region I in figure 5a), 

(90) 
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FIGURE 7. Velocity profiles near x = xs just before t , ;  here E = 1.05 x lo-*. 

asymptotically, in keeping with the behaviour indicated in (87) and (88), rather than 
occurring within the thick intermediate layer (region I1 in figure 5a). At the same 
time, however, it  is worthwhile to mention that the assumptions made by Elliott 
et al. (1983) concerning the symmetry of region I1 (cf. figure 5a) can be relaxed to 
accommodate the possible occurrence of local maxima within region 11. The location 
x = x, corresponds to the streamwise location of the spike depicted in figure 4. To the 
left and right of z,, it may be noted that a significant portion of the profiles are also 
flat but that the upper shear layer is returning toward the wall. 

The theory of Van Dommelen & Shen (1980) and Elliott et al. (1983) predicts that 
the maximum value of the displacement thickness is of the form 

C 
8;- = ~ 

( t ,  - t)" ' 

where m = a. Owing to the nature of the local displacement thickness near the spike, 
it is difficult to compute a value of near t = t ,  with a high degree of accuracy. 
Nevertheless, a least-squares curve fit of (91) to the computed results for 8;- in the 
time interval 0.900 < t < 0.986 produced the following values : 

C = 1.71 f0.02, m = 0.253f0.003. (92) 

This value of m closely confirms that growth rate of the boundary layer near t = t ,  
predicted by Elliott et al. (1983). 

Lastly consider the behaviour of the wall shear defined by 

and in Lagrangian coordinates by using 

7, (2, t )  = VJX) - . : I 'I-0 (94) 

The gradient in (94) was evaluated with a four-point sloping difference and the 
development is shown in figure 8. It may be observed that during the course of the 
integration, the wall shear remains smooth and regular ; this is expected since the 

5-2 
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solution in zone I (cf figure 5a)  is a function of y alone (Elliott et al. 1983). One feature 
in figure 8 is worthy of note near x = -0.30 where the wall shear rises abruptly as 
t +  t , ;  this occurs to the left of where the singularity develops at  x,  = -0.214 and was 
observed to form for all three sets of mesh sizes. To examine a possible cause for this 
behaviour, the wall shear and instantaneous streamlines are plotted on an expanded 
scale in figure 9(a, b). Note that no attempt has been made in these graphs (as well 
as the previous plots) to smooth the results and the plotter has simply connected 
values at each mesh point. On the scale of figure 9(a), the distribution of 7, appears 
well-behaved. The maximum in wall shear (corresponding to the tip of the ‘spike’ 
in figure 8 )  coincides with the streamwise location of the stagnation point near 
x = -0.30 and close to the surface in figure 9(b). With the evolution of large 
updraughts near the singularity at x, = -0.214, the stagnation point is lifted 
somewhat from the wall giving rise to a pinching of the streamlines and a mildly 
intense variation in 7, near t = t,. 

8. Discussion 
It has been demonstrated that the vortex-driven unsteady boundary layer 

considered here for the limit problem Re + 00 develops a singularity on the zero- 
vorticity line. Furthermore, the terminal singularity structure is identical to that 
reached for the impulsively started circular cylinder by Van Dommelen & Shen 
(1980, 1982) and described by Elliott, et al. (1983). In the terminal stage of the 
boundary-layer development the flow focuses rapidly into a narrow eruptive spike 
that grows explosively away from the surface. For the limit problem Re -+ co, the 
eruption appears to take place at a point on a scale where x is O(1). 

Elliott et al. (1983) have discussed the next stage in the eruptive process wherein 
interaction with the external flow comes into play when t,--t is O(Re-A). This 
interaction occurs over a streamwise lengthscale where x- x, is O(Re-A). Thepormal 
dimension of the intermediate zone I1 in figure 5(a)  grows to become O ( R e T )  while 
shear layers I and I11 remain O(I2e-i). The pressure distribution which governs the 
subsequent development in zone I1 is determined through evaluation of a Cauchy 
integral involving the displacement thickness distribution due to the rapidly 
thickening central zone. This phase of the flow development will be referred to here 
as the ‘first interactive stage’ and was originally formulated by Elliott et al. (1983). 
However, because of the complex nature of this interaction problem, as well as the 
challenging type of boundary conditions (which are similar to (88) and (89)), no 
numerical solutions of the fist interactive stage have yet been produced. It may be 
expected that this stage will also terminate in a singularity, and that in a limit 
analysis Re + 00 it will be necessary to compute a whole series of intermediate stages 
before the erupting vorticity from near the surface penetrates an O( I )  distance from 
the wall. 

One attractive feature of the model problem is that the general nature of the 
viscous-inviscid interaction has been documented by experiment (Harvey & Perry 
1971 ; Walker et al. 1987 ; Chu & Falco 1988). The net result is that a secondary vortex 
is ejected from the boundary layer and the secondary vortex is generally of 
comparable strength and dimension to the original primary vortex. The precise 
details of how this takes place are not entirely understood. It is evident from figure 
3 ( d )  that, by t,, the recirculating eddy is being lifted off the wall and also drawn into 
the eruptive spike. It is possible that the next stage in the process consists of 
compression of the eddy which is then sucked into the erupting spike and 
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subsequently thrown out into the external flow. Flow visualization (Walker et al. 
1987) suggests this scenario but further theoretical work is required to confirm this 
physical picture of how the secondary vortex reaches the external region. Clearly a 
description of the complete problem of breakaway of the boundary layer into the 
mainstream for the limit problem Re --f co is rather complex. An alternative approach 
to consider the nature of the eruption is interacting boundary-layer (IBL) theory in 
which a finite but large value of Re is assumed; in this approach the thickening 
boundary layer influences the external flow and the mainstream pressure gradient 
changes with time, as opposed to the limit problem where dp,/dx is prescribed. 
Experience with steady interacting boundary-layer methods hints that such schemes 
may relieve the singularity encountered in the limit problem and permit the 
computations to proceed much further in time. The recent work of Henkes & 
Veldman (1987), Chuang & Conlisk (1989) and Riley & Vasantha (1990) on the 
impulsively started circular cylinder and problems in vortex-induced separation 
suggests that interacting boundary-layer methods may in some sense mitigate the 
unsteady separation singularity. By contrast, however, in part 2 (Peridier et al. 
1991), IBL calculations are carried out for the present problem and it is shown fairly 
conclusively that the approach also breaks down in finite time in advance of the 
breakdown time t ,  for the limit problem. The new singularity associated with the 
breakdown of the IBL formulation is found to be that described by Smith (1988) ; see 
also Hoyle, Smith & Walker (1991). 

It is evident that the Lagrangian method is very effective at accurately tracing the 
boundary-layer solution all the way to the evolution of the separat,ion singularity. A t  
present it is the only scheme in which the integrations can be continued this far. 
Although conventional Eulerian methods which employ a fixed spatial mesh are 
clearly not suited to the calculation of such eruptive phenomena, an Eulerian 
approach may well be feasible if a time-dependent adaptive mesh scheme is 
developed wherein local refinement of the mesh is carried out, dynamically as soon as 
strong updraughts start to occur. The present factored AD1 method with upwind- 
downwind differencing is a robust numerical algorithm particularly suited to this 
type of problem. However it should be noted that careful checking of the results 
during the course of the integration may be necessary in other applications of the 
approach. In the present problem, stability problems were encountered near the 
stagnation point close to the wall (see, for example, figure 3a)  which could only be 
inhibited by reduced time steps. 

Lastly, it is of interest to comment on the relevance of the phenomenon described 
in this study to the processes of regeneration of new vorticity at the surface in 
transitional and fully turbulent boundary layers. In  both environments, the basic 
element of the flow structure appears to be the convected hairpin vortex (Walker 
1990b; Smith et al. 1990, 1991). Such vortices expose the surface flow to a moving 
zone of adverse pressure gradient and are observed to eventually actuate eruptions 
of the viscous flow near the surface. Although the details of the process are more 
complex in three-dimensional flows (Van Dommelen & Cowley 1990), the basic 
character of the eruptive process is the same as discussed in this paper. The event 
develops in a frame of reference moving with the vortex, and the induced adverse 
pressure gradient ultimately provokes an abrupt and tightly focused narrow-band 
eruption. It is evident from the present results that the erupting ‘spike ’ will contain 
elevated levels of vorticity which is subsequently observed to roll over into a new 
secondary hairpin vortex (Smith et al. 1990, 1991). End-view visualization in both 
transitional and fully turbulent boundary layers (Smith et al. 1991) suggests that 
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breakdown of the surface layers takes place intermittently and predominantly in this 
manner, with narrow ‘spikes ’ of erupting fluid which penetrate into the outer regions 
of the boundary layer. 
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Appendix 
In this Appendix the finite-difference operFtor notation utilized in this discussion 

is explicitly defined for completeness. Here (& $) are iqdependent spatial coordinates 
and the uniform mesh spacing in each dire$ion is ( A t ,  A$) respectively. The general 
form of the enlargement operators in the 6- and +directions are defined by 

where p is an arbitrary constant. The enlargement operator simply shifts the 
argument of the function. The central-difference operators 8,. and C3$ are defined by 
(49) and consequently expressions such as 

correspond to the central difference of a function with one spatial variable held fixed. 
Finally, the averaging operators pi and ,uf are defined by (55) and therefore 

~eu(5^, 4) = a(u(~+~AfI^, .Fi)+u(d-~Ai, .r])) ,  

p,ju(i,4) = t(u(i,9+tA~)+u(i,.FI-tAi)), (A 6) 

(A 5 )  

correspond to function averages with one spatial variable held fixed. 
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